Сколько хромосом у шпорцевой лягушки. Хромосомы. Число и морфология хромосом. Можно ли вылечить

Из школьных учебников по биологии каждому доводилось знакомиться с термином хромосома. Понятие было предложено Вальдейером в 1888 году. Оно переводится буквально как окрашенное тело. Первым объектом исследований стала плодовая мушка.

Общее о хромосомах животных

Хромосома – это структура ядра клетки, в которой хранится наследственная информация. Она образуются из молекулы ДНК, в которой содержится множество генов. Другими словами, хромосома – это молекула ДНК. Ее количество у различных животных неодинаковое. Так, например, у кошки – 38, а у коровы -120. Интересно, что самое маленькое число имеют дождевые черви и муравьи. Их количество составляет две хромосомы, а у самца последних – одна.

У высших животных, так же как и у человека, последняя пара представлена ХУ половыми хромосомами у самцов и ХХ – у самок. Нужно обратить внимание, что число этих молекул для всех животных постоянно, но у каждого вида их количество отличается. Для примера можно рассмотреть содержание хромосом у некоторых организмов: у шимпанзе – 48, речного рака -196, у волка – 78, зайца – 48. Это связано с разным уровнем организации того или иного животного.

На заметку! Хромосомы всегда размещаются парами. Генетики утверждают, что эти молекулы и есть неуловимые и невидимые носители наследственности. Каждая из хромосом содержит в себе множество генов. Некоторые считают, что чем больше этих молекул, тем животное более развитое, а его организм сложнее устроен. В таком случае, у человека хромосом должно насчитываться не 46, а больше, чем у любого другого животного.

Сколько хромосом у различных животных

Необходимо обратить внимание! У обезьян количество хромосом приближено к значению человека. Но у каждого вида результаты отличаются. Итак, у различных обезьян насчитывается следующее количество хромосом:

  • Лемуры имеют в своем арсенале 44-46 молекул ДНК;
  • Шимпанзе – 48;
  • Павианы – 42,
  • Мартышки – 54;
  • Гиббоны – 44;
  • Гориллы – 48;
  • Орангутанг – 48;
  • Макаки – 42.

У семейства псовых (хищных млекопитающих) хромосом больше, чем у обезьян.

  • Так, у волка – 78,
  • у койота – 78,
  • у лисицы малой – 76,
  • а вот у обыкновенной – 34.
  • У хищных зверей льва и тигра присутствуют по 38 хромосом.
  • У домашнего животного кошки – 38, а у его оппонента собаки почти в два раза больше – 78.

У млекопитающих, которые имеют хозяйственное значение, количество этих молекул следующее:

  • кролик – 44,
  • корова – 60,
  • лошадь – 64,
  • свинья – 38.

Познавательно! Самыми большими хромосомными наборами среди животных обладают хомячки. Они имеют 92 в своем арсенале. Также в этом ряду идут ежики. У них есть 88-90 хромосом. А самым маленьким количеством этих молекул наделены кенгуру. Их численность составляет 12. Очень интересен тот факт, что у мамонта 58 хромосом. Образцы взяты из замороженной ткани.

Для большей наглядности и удобства, данные других животных будут представлены в сводке.

Наименование животного и количество хромосом:

Пятнистые куницы 12
Кенгуру 12
Желтая сумчатая мышь 14
Сумчатый муравьед 14
Обыкновенный опоссум 22
Опоссум 22
Норка 30
Барсук американский 32
Корсак (лисица степная) 36
Лисица тибетская 36
Панда малая 36
Кошка 38
Лев 38
Тигр 38
Енот-полоскун 38
Канадский бобр 40
Гиены 40
Мышь домовая 40
Павианы 42
Крысы 42
Дельфин 44
Кролики 44
Человек 46
Заяц 48
Горилла 48
Лисица американская 50
Полосатый скунс 50
Овца 54
Слон (азиатский, саванный) 56
Корова 60
Коза домашняя 60
Обезьяна шерстистая 62
Осел 62
Жираф 62
Мул (гибрид осла и кобылы) 63
Шиншилла 64
Лошадь 64
Лисица серая 66
Белохвостый олень 70
Лисица парагвайская 74
Лисица малая 76
Волк (красный, рыжий, гривистый) 78
Динго 78
Койот 78
Собака 78
Шакал обыкновенный 78
Курица 78
Голубь 80
Индейка 82
Эквадорский хомячок 92
Лемур обыкновенный 44-60
Песец 48-50
Ехидна 63-64
Ежи 88-90

Количество хромосом у разных видов животных

Как видно, каждое животное обладает разным количеством хромосом. Даже у представителей одного семейства показатели отличаются. Можно рассмотреть на примере приматов:

  • у гориллы – 48,
  • у макаки – 42, а у мартышки 54 хромосом.

Почему это так, остается загадкой.

Сколько хромосом у растений?

Наименование растения и количество хромосом:

Видео

Плохая экология, жизнь в постоянном стрессе, приоритет карьеры над семьей – все это плохо отражается на способности человека приносить здоровое потомство. Как это ни прискорбно, но около 1% младенцев, появившихся на свет с серьезными нарушениями в хромосомном наборе, вырастают умственно или физически отсталыми. У 30% новорожденных отклонения в кариотипе приводят к формированию врожденных пороков. Основным вопросам этой темы посвящена наша статья.

Основной носитель наследственной информации

Как известно, хромосома – это определенная нуклеопротеидная (состоящая из устойчивого комплекса белков и нуклеиновых кислот) структура внутри ядра клетки эукариотов (то есть тех живых существ, клетки которых имеют ядро). Ее основная функция – хранение, передача и реализация генетической информации. Видна она под микроскоп только во время таких процессов как мейоз (деление двойного (диплоидного) набора генов хромосомы при создании половых клеток) и микоз (деление клеток при развитии организма).

Как уже было упомянуто, хромосома состоит из дезоксирибонуклеиновой кислоты (ДНК) и белков (около 63% ее массы), на которых намотана ее нить. Многочисленные исследования в области цитогенетики (наука о хромосомах) доказали, что именно ДНК является основным носителем наследственности. В ней заключается информация, которая в последствие реализуется в новом организме. Это комплекс генов, отвечающих за цвет волос и глаз, рост, количество пальцев и прочее. Какие из генов будут переданы ребенку, определяется в момент зачатия.

Формирование хромосомного набора здорового организма

У нормального человека 23 пары хромосом, каждая из которых отвечает за определенный ген. Итого их 46 (23х2) - сколько хромосом у здорового человека. Одна хромосома достается нам от отца, другая передается от матери. Исключение составляет 23 пара. Она отвечает за пол человека: женский обозначается как XX, а мужской – как XY. Когда хромосомы в паре – это диплоидный набор. В половых клетках они разъединены (гаплоидный набор) перед последующим соединением во время оплодотворения.

Совокупность признаков хромосом (как количественных, так и качественных), рассмотренных в пределах одной клетки, ученые называют кариотипом. Нарушения в нем, в зависимости от характера и степени тяжести, приводят к возникновению различных болезней.

Отклонения в кариотипе

Все нарушения кариотипа при классификации традиционно делят на два класса: геномные и хромосомные.

При геномных мутациях отмечают увеличение числа всего набора хромосом, или числа хромосом в одной из пар. Первый случай носит название полиплоидия, второй – анеуплоидия.

Хромосомные нарушения представляют собой перестройки, как внутри хромосом, так и между ними. Не вдаваясь в научные дебри, их можно описать так: некоторые участки хромосом могут не присутствовать или же быть удвоены в ущерб другим; может быть нарушен порядок следования генов, или изменено их местонахождение. Нарушения в структуре могут произойти в каждой хромосоме человека. В настоящее время, подробно описаны изменения в каждой из них.

Остановимся подробнее на наиболее известных и широко распространенных геномных заболеваниях.

Синдром Дауна

Был описан еще в 1866 году. На 700 новорожденных, как правило, приходится один малыш с подобной болезнью. Суть отклонения состоит в том, что к 21 паре присоединяется третья хромосома. Получается это, когда в половой клетке одного из родителей 24 хромосомы (с удвоенной 21). У больного ребенка в итоге их 47 – вот сколько хромосом у человека Дауна. Такой патологии способствуют вирусные инфекции или ионизирующая радиация, перенесенные родителями, а также диабет.

Дети с синдромом Дауна умственно отсталые. Проявления недуга видны даже во внешности: слишком большой язык, большие уши неправильной формы, кожная складка на веке и широкая переносица, белесые пятна в глазах. Живут такие люди в среднем лет сорок, поскольку, помимо прочего, подвержены сердечным заболеваниям, проблемам с кишечником и желудком, неразвитыми половыми органами (хотя женщины могут быть способны к деторождению).

Риск рождения больного ребенка тем выше, чем старше родители. В настоящее время существуют технологии, позволяющие распознать хромосомное нарушение на ранней стадии беременности. Немолодым парам необходимо проходить подобный тест. Не помешает он и молодым родителям, если в роду одного из них встречались больные синдромом дауна. Мозаичная форма болезни (поврежден кариотип части клеток) формируется уже на стадии эмбриона и от возраста родителей не зависит.

Синдром Патау

Это нарушение представляет собой трисомию тринадцатой хромосомы. Встречается оно куда реже, чем предыдущий описанный нами синдром (1 к 6000). Возникает оно при присоединении лишней хромосомы, а также при нарушении структуры хромосом и перераспределении их частей.

Диагностируют синдром Патау по трем симптомам: микрофтальм (уменьшенные размеры глаз), полидактилия (большее количество пальцев), расщелина губы и неба.

Смертность младенцев при этой болезни составляет порядка 70%. Большинство из них не доживает до 3 лет. У подверженных этому синдрому особей чаще всего наблюдаются порок сердца и/или головного мозга, проблемы с другими внутренними органами (почки, селезенка и прочее).

Синдром Эдвардса

Большая часть младенцев, у которых 3 восемнадцатых хромосомы, погибают вскоре после рождения. У них ярко выражена гипотрофия (проблемы с пищеварением, не позволяющие ребенку набрать вес). Глаза широко поставлены, уши низко расположены. Часто наблюдается порок сердца.

Выводы

Чтобы не допустит рождения больного ребенка, желательно проходит специальные обследования. В обязательном порядке тест показан роженицам после 35 лет; родителям, родственники которых были подвержены подобным заболеваниям; пациенткам, имеющим проблемы со щитовидной железой; женщинам, у которых случались выкидыши.

МОСКВА, 4 июл — РИА Новости, Анна Урманцева . У кого геном больше? Как известно, одни существа имеют более сложное строение, чем другие, а раз все записано в ДНК, то и это тоже должно быть отражено в ее коде. Получается, человек с его развитой речью обязан быть сложнее маленького круглого червяка. Однако если сравнить нас с червяком по количеству генов, получится примерно то же самое: 20 тысяч генов Caenorhabditis elegans против 20-25 тысяч Homo sapiens.

Еще более обидными для "венца земных созданий" и "царя природы" являются сравнения с рисом и кукурузой — 50 тысяч генов по отношению к человеческим 25.

Впрочем, может, мы не то считаем? Гены — это "коробочки", в которые упакованы нуклеотиды — "буквы" генома. Может, посчитать их? У человека 3,2 миллиарда пар нуклеотидов. А вот японский вороний глаз (Paris japonica) — красивое растение с белыми цветами — имеет в своем геноме 150 миллиардов пар оснований. Получается, что человек должен быть устроен в 50 раз проще какого-то цветка.

А двоякодышащая рыба протоптер (двоякодышащая — обладающая как жаберным, так и легочным дыханием), получается, в 40 раз сложнее, чем человек. Может, все рыбы почему-то сложнее, чем люди? Нет. Ядовитая рыба фугу, из которой японцы готовят деликатес, имеет геном в восемь раз меньше, чем у человека, и в 330 раз меньше, чем у двоякодышащей рыбы протоптер.
Остается посчитать хромосомы — но это еще сильнее запутывает картину. Как может человек по количеству хромосом быть равным ясеню, а шимпанзе — таракану?


С этими парадоксами эволюционные биологи и генетики столкнулись давным-давно. Они были вынуждены признать, что размер генома, в чем бы мы его ни пытались посчитать, поразительно не связан со сложностью устройства организмов. Этот парадокс назвали "загадкой значений С", где С — это количество ДНК в клетке (C-value paradoх, точный перевод — "парадокс величины генома"). И все-таки какие-то корреляции между видами и царствами существуют.

© Иллюстрация РИА Новости. А.Полянина


© Иллюстрация РИА Новости. А.Полянина

Ясно, например, что эукариоты (живые организмы, клетки которых содержат ядро) имеют в среднем геномы больше, чем прокариоты (живые организмы, клетки которых не содержат ядро). Позвоночные животные имеют в среднем геномы больше, чем беспозвоночные. Однако тут есть исключения, которые никто пока не смог объяснить.

Генетики расшифровали ДНК растения, способного пережить атомный взрыв Ученые впервые расшифровали полный геном гинкго – древнейшего современного растения на Земле, первые представители которого появились еще до рождения первых динозавров, во времена звероящеров.

Были предположения, что размер генома связан с продолжительностью жизненного цикла организма. Некоторые ученые утверждали на примере растений, что многолетние виды имеют более крупные геномы, чем однолетние, причем обычно с разницей в несколько раз. А самые маленькие геномы принадлежат растениям-эфемерам, которые проходят полный цикл от рождения до смерти в течение нескольких недель. Этот вопрос сейчас активно обсуждается в научных кругах.

Поясняет ведущий научный сотрудник Института общей генетики им. Н. И. Вавилова Российской академии наук, профессор Техасского агромеханического университета и Гёттингенского университета Константин Крутовский: "Размер генома не связан с продолжительностью жизненного цикла организма! Например, есть виды внутри одного рода, которые имеют одинаковый размер генома, но могут различаться по продолжительности жизни в десятки, если не сотни раз. В целом есть связь размера генома с эволюционной продвинутостью и сложностью организации, но со множеством исключений. В основном размер генома связан с плоидностью (копийностью) генома (причем полиплоиды встречаются и у растений, и у животных) и количеством высокоповторяющейся ДНК (простые и сложные повторы, транспозоны и другие мобильные элементы)".

Генетики "воскресили" кукурузу возрастом в пять тысяч лет Генетики смогли извлечь ДНК из древнейших останков "культурной" кукурузы и восстановить ее геном, указавший на более древние корни любимого растения Никиты Сергеевича Хрущева, чем мы считали раньше.

Есть также ученые, которые придерживаются другой точки зрения на этот вопрос.

Термин хромосомы впервые предложен В. В ядрах интерфазных клеток выявить тела хромосом с помощью морфологических методов очень трудно. Собственно хромосомы как четкие плотные хорошо видимые в световой микроскоп тела выявляются только незадолго перед клеточным делением.


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск


Лекция №6

ХРОМОСОМЫ

Хромосомы – это основная функциональная авторепродуцирующая структура ядра, в которой концентрируется ДНК и с которой связаны функции ядра. Термин «хромосомы» впервые предложен В.Вальдейером в 1888 г.

В ядрах интерфазных клеток выявить тела хромосом с помощью морфологических методов очень трудно. Собственно хромосомы как четкие, плотные, хорошо видимые в световой микроскоп тела выявляются только незадолго перед клеточным делением. В самой же интерфазе хромосом как плотных тел не видно, так как они находятся в разрыхленном, деконденсированном состоянии.

Число и морфология хромосом

Число хромосом постоянно для всех клеток данного вида животных или растений, но значительно колеблется у различных объектов. Оно не связано с уровнем организации живых организмов. Примитивные организмы могут иметь много хромосом, а высокоорганизованные – гораздо меньше. Например, у некоторых радиолярий число хромосом достигает 1000-1600. Рекордсменом среди растений по числу хромосом (около 500) является папоротник ужовник, 308 хромосом у тутового дерева. Приведем примеры количественного содержания хромосом у некоторых организмов: речной рак – 196, человек – 46, шимпанзе – 48, пшеница мягкая – 42, картофель – 18, дрозофила – 8, муха домашняя – 12. Наименьшее количество хромосом (2) наблюдается у одной из рас аскариды, у сложноцветного растения гаплопапус всего 4 хромосомы.

Размеры хромосом у разных организмов варьируют в широких пределах. Так, длина хромосом может колебаться от 0,2 до 50 мкм. Самые мелкие хромосомы обнаруживаются у некоторых простейших, грибов, водорослей, очень мелкие хромосомы – у льна и морского камыша; они настолько малы, что с трудом видны в световой микроскоп. Наиболее длинные хромосомы обнаружены у некоторых прямокрылых насекомых, у амфибий и у лилейных. Длина хромосом человека находится в пределах 1,5-10 мкм. Толщина хромосом колеблется от 0,2 до 2 мкм.

Морфологию хромосом лучше всего изучать в момент их наибольшей конденсации, в метафазе и в начале анафазы. Хромосомы животных и растений в этом состоянии представляют собой палочковидные структуры разной длины с довольно постоянной толщиной, у большей части хромосом удается легко найти зону первичной перетяжки , которая делит хромосому на два плеча . В области первичной перетяжки расположена центромера, или кинетохор . Это пластинчатая структура, имеющая форму диска. Она связана тонкими фибриллами с телом хромосомы в области перетяжки. Кинетохор плохо изучен в структурном и функциональном отношениях; так, известно, что он является одним из центров полимеризации тубулинов, от него отрастают пучки микротрубочек митотического веретена, идущие в направлении к центриолям. Эти пучки микротрубочек принимают участие в движении хромосом к полюсам клетки при митозе. Некоторые хромосомы имеют вторичную перетяжку . Последняя обычно расположена вблизи дистального конца хромосомы и отделяет маленький участок – спутник . Размеры и форма спутника постоянны для каждой хромосомы. Размер и протяженность вторичных перетяжек также весьма постоянны. Некоторые вторичные перетяжки представляют собой специализированные участки хромосом, связанные с образованием ядрышка (ядрышковые организаторы), остальные не связаны с формированием ядрышка и их функциональная роль не до конца выяснена. Плечи хромосом оканчиваются конечными участками – теломерами. Теломерные концы хромосом не способны соединяться с другими хромосомами или их фрагментами, в отличие от концов хромосом, лишенных теломерных участков (в результате разрывов), которые могут присоединяться к таким же разорванным концам других хромосом.

По расположению первичной перетяжки (центромеры) выделяют следующие типы хромосом:

1. метацентрическая – центромера расположена посередине, плечи равной или почти равной длины, в метафазе приобретает V -образную форму;

2. субметацентрическая – первичная перетяжка слегка сдвинута к одному из полюсов, одно плечо немного длиннее другого, в метафазе имеет L -образную форму;

3. акроцентрическая – центромера сильно сдвинута к одному из полюсов, одно плечо гораздо длиннее другого, в метафазе не перегибается и имеет палочковидную форму;

4. телоцентрическая – центромера располагается на конце хромосомы, но такие хромосомы в природе не обнаружены.

Обычно каждая хромосома имеет только одну центромеру (моноцентрические хромосомы), но могут встречаться хромосомы дицентрические (с 2-мя центромерами) и полицентрические (обладающие множеством центромер).

Встречаются виды (например, осоки), у которых хромосомы не содержат видимых центромерных участков (хромосомы с диффузно расположенными центромерами). Они называются ацентрическими и не способны совершать упорядоченное движение при делении клетки.

Химический состав хромосом

Основными компонентами хромосом являются ДНК и основные белки (гистоны). Комплекс ДНК с гистонами – дезоксирибонуклеопротеид (ДНП) – составляет около 90% массы как изолированных из интерфазных ядер хромосом, так и хромосом делящихся клеток. Содержание ДНП постоянно для каждой хромосомы данного вида организма.

Из минеральных компонентов наибольшее значение имеют ионы кальция и магния, которые придают хромосомам пластичность, и их удаление делает хромосомы очень хрупкими.

Ультраструктура

Каждая митотическая хромосома сверху покрыта пелликулой . Внутри находится матрикс , в котором расположена спирально завитая нить ДНП, толщиной 4-10 нм.

Элементарные фибриллы ДНП – это основная составная часть, которая входит в структуру митотических и мейотических хромосом. Поэтому, чтобы понять устройство таких хромосом, необходимо знать, как эти единицы организованы в составе компактного тела хромосом. Интенсивное изучение ультраструктуры хромосом началось в середине 50-х годов прошлого столетия, что связано с внедрением в цитологию метода электронной микроскопии. Существуют 2 гипотезы организации хромосом.

1). Унинемная гипотеза утверждает, что в хромосоме находится только одна двунитчатая молекула ДНП. Эта гипотеза имеет морфологические, авторадиографические, биохимические и генетические подтверждения, что делает эту точку зрения наиболее популярной на сегодняшний день, так как хотя бы для ряда объектов (дрозофила, дрожжевые грибы) она является доказанной.

2). Полинемная гипотеза состоит в том, что несколько двунитчатых молекул ДНП объединяются в пучок – хромонему , а, в свою очередь, 2-4 хромонемы, скручиваясь, образуют хромосому. Практически все наблюдения полинемности хромосом были сделаны при помощи светового микроскопа на ботанических объектах с крупными хромосомами (лилии, различные луки, бобы, традесканция, пион). Возможно, что явления полинемии, которые наблюдались на клетках высших растений, характерны лишь для этих объектов.

Таким образом, не исключено, что есть несколько разных принципов структурной организации хромосом эукариотических организмов.

В интерфазных клетках многие участки хромосом деспирализованы, что связано с их функционированием. Они называются эухроматин. Считается, что эухроматические участки хромосом активны и содержат весь основной комплекс генов клетки или организма. Эухроматин наблюдается в виде мелкой зернистости или вообще не различим в ядре интерфазной клетки.

При переходе клетки от митоза к интерфазе определенные зоны различных хромосом или даже целые хромосомы остаются компактными, спирализованными и хорошо окрашиваются. Эти зоны получили название гетерохроматин . Он присутствует в клетке в виде крупной зернистости, глыбок, хлопьев. Гетерохроматические участки обычно располагаются в теломерных, центромерных, околоядрышковых районах хромосом, но могут входить и в состав их внутренних частей. Утеря даже значительных участков гетерохроматических районов хромосом не приводит к гибели клетки, так как они не активны и их гены временно или постоянно не функционируют.

Матрикс – это компонент митотических хромосом растений и животных, освобождающийся при деспирализации хромосом и состоящий из фибриллярных и гранулярных структур рибонуклеопротеидной природы. Возможно, роль матрикса заключается в переносе хромосомами РНК-содержащего материала, который необходим как для образования ядрышек, так и для восстановления собственно кариоплазмы в дочерних клетках.

Хромосомный набор. Кариотип

Постоянство таких признаков, как величина, местоположение первичной и вторичной перетяжек, наличие и форма спутников, определяет морфологическую индивидуальность хромосом. Благодаря такой морфологической индивидуальности, у многих видов животных и растений удается распознавать любую хромосому набора в любой делящейся клетке.

Совокупность числа, величины и морфологии хромосом называется кариотипом данного вида. Кариотип – это как бы лицо вида. Даже у близких видов хромосомные наборы отличаются друг от друга или по числу хромосом, или по величине хотя бы одной или нескольких хромосом, или по форме хромосом и по их структуре. Следовательно, структура кариотипа может быть таксономическим (систематическим) признаком, который все чаще используется в систематике животных и растений.

Графическое изображение кариотипа называется идиограммой .

Число хромосом в зрелых половых клетках называется гаплоидным (обозначается n ). Соматические клетки содержат двойное количество хромосом – диплоидный набор (2 n ). Клетки, имеющие более двух наборов хромосом, называются полиплоидными (3 n , 4 n , 8 n и т.д.).

В диплоидном наборе имеются парные хромосомы, одинаковые по форме, структуре и размерам, но имеющие разное происхождение (одна материнская, другая отцовская). Они называются гомологичными.

У многих высших раздельнополых животных в диплоидном наборе существует одна или две непарные хромосомы, которые отличаются у самцов и самок, – это половые хромосомы. Остальные хромосомы называются аутосомами . Описаны случаи, когда у самца имеется только одна половая хромосома, а у самки их две.

У многих рыб, млекопитающих (в том числе и человека), некоторых амфибий (лягушки рода Rana ), насекомых (жуки, двукрылые, прямокрылые) крупная хромосома обозначается буквой Х, а маленькая – буквой У. У этих животных в кариотипе самки последняя пара представлена двумя ХХ-хромосомами, а у самца – ХУ-хромосомами.

У птиц, рептилий, отдельных видов рыб, некоторых амфибий (хвостатые амфибии), бабочек мужской пол имеет одинаковые половые хромосомы (WW -хромосомы), а женский – разные (WZ -хромосомы).

У многих животных и человека в клетках индивидов женского пола одна из двух половых хромосом не функционирует и поэтому целиком остается в спирализованном состоянии (гетерохроматин). Она обнаруживается в интерфазном ядре в виде глыбки полового хроматина у внутренней ядерной мембраны. Половые хромосомы в мужском организме функционируют обе пожизненно. Если в ядрах клеток мужского организма обнаруживается половой хроматин, то это значит, что у него имеется лишняя Х-хромосома (ХХУ – болезнь Клейнфельтера). Это может происходить в результате нарушения спермато- или оогенеза. Исследование содержания полового хроматина в интерфазных ядрах широко используется в медицине для диагносцирования хромосомных болезней человека, вызванных нарушением баланса половых хромосом.

Изменения кариотипа

Изменения кариотипа могут быть связаны с изменением числа хромосом или с изменением их структуры.

Количественные изменения кариотипа : 1) полиплоидия; 2) анеуплоидия.

Полиплоидия – это кратное увеличение числа хромосом по сравнению с гаплоидным. В результате вместо обычных диплоидных клеток (2 n ) образуются, например, триплоидные (3 n ), тетраплоидные (4 n ), октаплоидные (8 n ) клетки. Так, у лука, диплоидные клетки которого содержат 16 хромосом, триплоидные клетки содержат 24 хромосомы, тетраплоидные – 32 хромосомы. Полиплоидные клетки отличаются большими размерами и повышенной жизнестойкостью.

Полиплоидия широко распространена в природе, особенно среди растений, многие виды которых произошли в результате кратных удвоений числа хромосом. Большинство культурных растений, например, мягкая пшеница, многорядный ячмень, картофель, хлопчатник, большая часть плодовых и декоративных растений, является естественно возникшими полиплоидами.

Экспериментально полиплоидные клетки легче всего получить действием алкалоида колхицина или других веществ, нарушающих митоз. Колхицин разрушает веретено деления, благодаря чему уже удвоившиеся хромосомы остаются лежать в плоскости экватора и не расходятся к полюсам. После прекращения действия колхицина хромосомы образуют общее ядро, но уже более крупное (полиплоидное). При последующих делениях хромосомы опять будут удваиваться и расходиться к полюсам, но удвоенное количество их останется. Искусственно полученные полиплоиды широко используются в селекции растений. Созданы сорта триплоидной сахарной свеклы, тетраплоидной ржи, гречихи и других культур.

У животных полная полиплоидия встречается очень редко. Например, в горах Тибета обитает один из видов лягушек, популяция которых на равнине имеет диплоидный хромосомный набор, а высокогорные популяции – триплоидный, или даже тетраплоидный.

У человека полиплоидия приводит к резко отрицательным последствиям. Рождение детей с полиплоидией наблюдается крайне редко. Обычно происходит гибель организма на эмбриональной стадии развития (около 22,6% всех спонтанных абортов обусловлены полиплоидией). Следует отметить, что триплоидия встречается в 3 раза чаще, по сравнению с тетраплоидией. Если дети с синдромом триплоидии все же рождаются, то они имеют аномалии в развитии наружных и внутренних органов, практически нежизнеспособны и погибают в первые дни после рождения.

Чаще наблюдается соматическая полиплоидия. Так, в клетках печени человека с возрастом делящихся клеток становится все меньше, но возрастает количество клеток с большим ядром или двумя ядрами. Определение количества ДНК в таких клетках ясно показывает, что они стали полиплоидными.

Анеуплоидия – это увеличение или уменьшение числа хромосом, не кратное гаплоидному. Анеуплоидные организмы, то есть организмы, все клетки которых содержат анеуплоидные наборы хромосом, как правило, стерильны или маложизнеспособны. В качестве примера анеуплоидии рассмотрим некоторые хромосомные болезни человека. Сидром Клейнфельтера: в клетках мужского организма имеется лишняя Х-хромосома, что приводит к общему физическому недоразвитию организма, в частности его половой системы, и психическим отклонениям. Синдром Дауна: лишняя хромосома содержится в 21 паре, что приводит к умственной отсталости, аномалии внутренних органов; болезнь сопровождается некоторыми внешними признаками слабоумия, встречается у мужчин и женщин. Синдром Тернера вызван недостатком одной Х-хромосомы в клетках женского организма; проявляется в недоразвитии половой системы, бесплодии, внешних признаках слабоумия. При недостатке одной Х-хромосомы в клетках мужского организма наблюдается летальный исход на эмбриональной стадии.

Анеуплоидные клетки постоянно возникают в многоклеточном организме в результате нарушения нормального хода клеточного деления. Как правило, такие клетки быстро гибнут, однако при некоторых патологических состояниях организма они успешно размножаются. Высокий процент анеуплоидных клеток характерен, например, для многих злокачественных опухолей человека и животных.

Структурные изменения кариотипа. Хромосомные перестройки, или хромосомные аберрации, возникают в результате одиночных или множественных разрывов хромосом или хроматид. Фрагменты хромосом в местах разрыва способны соединяться друг с другом или с фрагментами других хромосом набора. Хромосомные аберрации бывают следующих типов. Делеция – это потеря срединного участка хромосомы. Дифишенция – это отрыв концевого участка хромосомы. Инверсия – отрыв участка хромосомы, поворот его на 180 0 и присоединение к той же хромосоме; при этом нарушается порядок нуклеотидов. Дупликация – отрыв участка хромосомы и присоединение его к гомологичной хромосоме. Транслокация – отрыв участка хромосомы и присоединение его к негомологичной хромосоме.

В результате таких перестроек могут образовываться дицентрические и ацентрические хромосомы. Крупные делеции, дифишенции и транслокации резко изменяют морфологию хромосом и хорошо видны в микроскоп. Мелкие делеции и транслокации, а также инверсии обнаруживаются по изменению наследования генов, локализованных в участках хромосом, затронутых перестройкой, и по изменению поведения хромосом в процессе образования гамет.

Структурные изменения кариотипа всегда приводят к отрицательным последствиям. Например, синдром «кошачьего крика» вызван хромосомной мутацией (дифишенцией) в 5-й паре хромосом у человека; проявляется в неправильном развитии гортани, что влечет «мяуканье» вместо нормального крика в раннем детстве, отставании в физическом и умственном развитии.

Редупликация хромосом

В основе удвоения (редупликации) хромосом лежит процесс редупликации ДНК, т.е. процесс самовоспроизведения макромолекул нуклеиновых кислот, обеспечивающий точное копирование генетической информации и передачу ее от поколения к поколению. Синтез ДНК начинается с расхождения цепей, каждая из которых служит матрицей для синтеза дочерней цепи. Продуктами редупликации являются две дочерние молекулы ДНК, каждая из которых состоит из одной родительской и одной дочерней цепи. Важное место среди ферментов редупликации занимает ДНК-полимераза, ведущая синтез со скоростью около 1000 нуклеотидов в секунду (у бактерий). Редупликация ДНК полуконсервативна, т.е. при синтезе двух дочерних молекул ДНК каждая из них содержит одну «старую» и одну «новую» цепочку (такой способ редупликации был доказан Уотсоном и Криком в 1953 г.). Фрагменты, синтезируемые в ходе редупликации на одной цепи, «сшиваются» ферментом ДНК-лигазой.

В редупликации участвуют белки, расплетающие двойную спираль ДНК, стабилизирующие расплетенные участки, предотвращающие запутывание молекул.

Редупликация ДНК у эукариот происходит медленнее (около 100 нуклеотидов в секунду), но одновременно во многих точках одной молекулы ДНК.

Поскольку одновременно с редупликацией ДНК происходит и синтез белков, можно говорить о редупликации хромосом. Исследования, проведенные еще в 50-е годы ХХ столетия показали, что какое бы число продольно расположенных нитей ДНК ни содержали хромосомы организмов разных видов, при делении клетки хромосомы ведут себя как состоящие из двух одновременно редуплицирующихся субъединиц. После редупликации, которая протекает в интерфазе, каждая хромосома оказывается двойной, и еще до начала деления в клетке все готово к равномерному распределению хромосом между дочерними клетками. Если после редупликации не наступает деления, клетка становится полиплоидной. При образовании политенных хромосом хромонемы редуплицируюся, но не расходятся, благодаря чему и получаются гигантские хромосомы с огромным количеством хромонем.

Другие похожие работы, которые могут вас заинтересовать.вшм>

8825. Мітотичний поділ клітин. Будова хромосом 380.96 KB
Будова хромосом Лабораторна робота № 5 Мета: систематизувати та поглибити знання студентiв про життєвий цикл клiтини; про мiтоз його бiологiчне значення; формувати умiння знаходити за допомогою свiтлового мiкоскопа клiтини на рiзних фазах мiтозу зiставляти iх з мiкрофотографiями встановлювати...
16379. При этом еще четче обозначились вызовы без преодоления которых наша страна не может войти в число современн. 14.53 KB
Вместе с тем будучи имманентно присущи по своей природе историческим корням России они усугубляют действие кризиса на общую ситуацию в России и особенно на возможности преодоления кризисных явлений. Поскольку стабилизирующий обстановку в обществе средний класс в прежнем виде был утрачен в России надолго нынешние колебания в покупательной способности большинства населения зависят от наличия стабильной работы и иных как правило невысоких доходов в виде побочного заработка и социальных выплат. тех кто имеет в России официальный статус...
20033. Плазмодии малярии. Морфология. Циклы развития. Иммунитет при малярии. Химиотерапевтические препараты 2.35 MB
Малярийный плазмодий проходит сложный жизненный цикл развития, который совершается в организме человека (бесполый цикл, или шизогония) и комара (половой цикл, или спорогония). Развитие возбудителя малярии в организме человека - шизогония - представлено двумя циклами: первый из них совершается в клетках печени (тканевая, или внеэритроцитарная, шизогония), а второй - в эритроцитах крови (эритроцитарная шизогония).
6233. Строение и функции ядра. Морфология и химический состав ядра 10.22 KB
От цитоплазмы ядра обычно отделяются четкой границей. Бактерии и синезеленые водоросли не имеют сформированного ядра: их ядро лишено ядрышка не отделено от цитоплазмы отчетливо выраженной ядерной мембраной и носит название нуклеоид. Форма ядра.

Хромосомы - это основные структурные элементы клеточного ядра, являющиеся носителями генов, в которых закодирована наследственная информация. Обладая способностью к самовоспроизведению, хромосомы обеспечивают генетическую связь поколений.

Морфология хромосом связана со степенью их спирализации. Например, если в стадии интерфазы (см. Митоз, Мейоз) хромосомы максимально развернуты, т. е. деспирализованы, то с началом деления хромосомы интенсивно спирализуются и укорачиваются. Максимальной спирализации и укорочения хромосомы достигают в стадии метафазы, когда происходит формирование относительно коротких, плотных, интенсивно окрашивающихся основными красителями структур. Эта стадия наиболее удобна для изучения морфологических характеристик хромосом.

Метафазная хромосома состоит из двух продольных субъединиц - хроматид [ выявляет в строении хромосом элементарные нити (так называемые хромонемы, или хромофибриллы) толщиной 200 Å, каждая из которых состоит из двух субъединиц].

Размеры хромосом растений и животных значительно колеблются: от долей микрона до десятков микрон. Средние длины метафазных хромосом человека лежат в пределах 1,5-10 микрон.

Химической основой строения хромосом являются нуклеопротеиды - комплексы (см.) с основными белками - гистонами и протаминами.

Рис. 1. Строение нормальной хромосомы.
А - внешний вид; Б - внутреннее строение: 1-первичная перетяжка; 2 - вторичная перетяжка; 3 -спутник; 4 - центромера.

Индивидуальные хромосомы (рис. 1) различают по локализации первичной перетяжки, т. е. места расположения центромеры (во время митоза и мейоза к этому месту прикрепляются нити веретена, подтягивая ее при этом к полюсу). При утрате центромеры фрагменты хромосом утрачивают способность расходиться при делении. Первичная перетяжка делит хромосомы на 2 плеча. В зависимости от расположения первичной перетяжки хромосомы подразделяют на метацентрические (оба плеча равной или почти равной длины), субметацентрические (плечи неравной длины) и акроцентрические (центромера смещена на конец хромосомы). Помимо первичной, в хромосомах могут встречаться менее выраженные вторичные перетяжки. Небольшой концевой участок хромосом, отделенный вторичной перетяжкой, называют спутником.

Каждый вид организмов характеризуется своим специфическим (по числу, размерам и форме хромосом) так называемым хромосомным набором. Совокупность двойного, или диплоидного, набора хромосом обозначают как кариотип.



Рис. 2. Нормальный хромосомный набор женщины (в правом нижнем углу две X-хромосомы).


Рис. 3. Нормальный хромосомный набор мужчины (в правом нижнем углу - последовательно Х- и Y-хромосомы).

В зрелых , яйцеклетках и содержится одиночный, или гаплоидный, набор хромосом (n), составляющий половину диплоидного набора (2n), присущего хромосомам всех остальных клеток организма. В диплоидном наборе каждая хромосома представлена парой гомологов, один из которых материнского, а другой отцовского происхождения. В большинстве случаев хромосомы каждой пары идентичны по размерам, форме и генному составу. Исключение составляют половые хромосомы, наличие которых определяет развитие организма в мужском или женском направлении. Нормальный хромосомный набор человека состоит из 22 пар аутосом и одной пары половых хромосом. У человека и других млекопитающих женский определяется наличием двух Х-хромосом, а мужской - одной X-и одной Y-хромосомы (рис. 2 и 3). В женских клетках одна из Х-хромосом генетически неактивна и обнаруживается в интерфазном ядре в виде (см.). Изучение хромосом человека в норме и патологии составляет предмет медицинской цитогенетики. Установлено, что отклонения в числе или структуре хромосом от нормы, возникающие в половых! клетках или на ранних этапах дробления оплодотворенной яйцеклетки, вызывают нарушения нормального развития организма, обусловливая в некоторых случаях возникновение части спонтанных абортов, мертворождений, врожденных уродств и аномалий развития после рождения (хромосомные болезни). Примерами хромосомных болезней могут служить болезнь Дауна (лишняя G-хромосома), синдром Клайнфелтера (лишняя Х-хромосома у мужчин) и (отсутствие в кариотипе Y- или одной из Х-хромосом). В медицинской практике хромосомный анализ проводят или прямым методом (на клетках костного мозга), или после кратковременного культивирования клеток вне организма (периферическая кровь, кожа, эмбриональные ткани).

Хромосомы (от греч. chroma - окраска и soma - тело) - нитевидные, самовоспроизводящиеся структурные элементы клеточного ядра, содержащие в линейном порядке факторы наследственности - гены. Хромосомы отчетливо видны в ядре во время деления соматических клеток (митоза) и во время деления (созревания) половых клеток - мейоза (рис. 1). В том и в другом случае хромосомы интенсивно окрашиваются основными красителями, а также видны на неокрашенных цитологических препаратах в фазовом контрасте. В интерфазном ядре хромосомы деспирализованы и не видны в световой микроскоп, так как их поперечные размеры выходят за пределы разрешающей способности светового микроскопа. В это время отдельные участки хромосом в виде тонких нитей диаметром 100-500 Å можно различить при помощи электронного микроскопа. Отдельные не деспирализовавшиеся участки хромосом в интерфазном ядре видны через световой микроскоп как интенсивно красящиеся (гетеропикнотические) участки (хромоцентры).

Хромосомы непрерывно существуют в клеточном ядре, претерпевая цикл обратимой спирализации: митоз-интерфаза-митоз. Основные закономерности строения и поведения хромосом в митозе, мейозе и при оплодотворении одинаковы у всех организмов.

Хромосомная теория наследственности . Впервые хромосомы описали И. Д. Чистяков в 1874 г. и Страсбургер (Е. Strasburger) в 1879 г. В 1901 г. Уилсон (Е. В. Wilson), а в 1902 г. Саттон (W. S. Sutton) обратили внимание на параллелизм в поведении хромосом и менделевских факторов наследственности - генов - в мейозе и при оплодотворении и пришли к выводу, что гены находятся в хромосомах. В 1915-1920 гг. Морган (Т. Н. Morgan) и его сотрудники доказали это положение, локализовали в хромосомах дрозофилы несколько сот генов и создали генетические карты хромосом. Данные о хромосомах, полученные в первой четверти 20 века, легли в основу хромосомной теории наследственности, согласно которой преемственность признаков клеток и организмов в ряду их поколений обеспечивается преемственностью их хромосомах.

Химический состав и ауторепродукция хромосом . В результате цитохимических и биохимических исследований хромосом в 30 и 50-х годах 20 века установлено, что они состоят из постоянных компонентов [ДНК (см. Нуклеиновые кислоты), основных белков (гистонов или протаминов), негистонных белков] и переменных компонентов (РНК и связанного с ней кислого белка). Основу хромосом составляют дезоксирибонуклеопротеидные нити диаметром около 200 Å (рис. 2), которые могут соединяться в пучки диаметром 500 А.

Открытие Уотсоном и Криком (J. D. Watson, F. Н. Crick) в 1953 г. строения молекулы ДНК, механизма ее авторепродукции (редупликации) и нуклеинового кода ДНК и развитие возникшей после этого молекулярной генетики привело к представлению о генах как участках молекулы ДНК. (см. Генетика). Вскрыты закономерности авторепродукции хромосом [Тейлор (J. Н. Taylor) и др., 1957], оказавшиеся аналогичными закономерностям авторепродукции молекул ДНК (полуконсервативная редупликация).

Хромосомный набор - совокупность всех хромосом в клетке. Каждый биологический вид обладает характерным и постоянным набором хромосом, закрепленным в эволюции данного вида. Различают два основных типа наборов хромосом: одиночный, или гаплоидный (в половых клетках животных), обозначаемый n, и двойной, или диплоидный (в соматических клетках, содержащий пары сходных, гомологичных хромосом от матери и отца), обозначаемый 2n.

Наборы хромосом отдельных биологических видов значительно различаются по числу хромосом: от 2 (лошадиная аскарида) до сотен и тысяч (некоторые споровые растения и простейшие). Диплоидные числа хромосом некоторых организмов таковы: человека - 46, гориллы - 48, кошки - 60, крысы - 42, дрозофилы - 8.

Размеры хромосом у разных видов также различны. Длина хромосом (в метафазе митоза) варьирует от 0,2 мк у одних видов до 50 мк у других, а диаметр от 0,2 до 3 мк.

Морфология хромосом хорошо выражена в метафазе митоза. Именно метафазные хромосомы используют для идентификации хромосом. В таких хромосомах хорошо видны обе хроматиды, на которые продольно расщеплена каждая хромосома и центромер (кинетохор, первичная перетяжка), соединяющий хроматиды (рис. 3). Центромер виден как суженный участок, не содержащий хроматина (см.); к нему крепятся нити ахроматинового веретена, благодаря чему центромер определяет движение хромосом к полюсам в митозе и мейозе (рис. 4).

Потеря центромера, например при разрыве хромосомы ионизирующими излучениями или другими мутагенами, приводит к потере способности куска хромосомы, лишенного центромера (ацентрический фрагмент), участвовать в митозе и мейозе и к потере его из ядра. Это может привести к тяжелому повреждению клетки.

Центромер делит тело хромосомы на два плеча. Расположение центромера строго постоянно для каждой хромосомы и определяет три типа хромосом: 1) акроцентрические, или палочкообразные, хромосомы с одним длинным и вторым очень коротким плечом, напоминающим головку; 2) субметацентрические хромосомы с длинными плечами неравной длины; 3) метацентрические хромосомы с плечами одинаковой или почти одинаковой длины (рис. 3, 4, 5 и 7).


Рис. 4. Схема строения хромосом в метафазе митоза после продольного расщепления центромера: А и А1 - сестринские хроматиды; 1 - длинное плечо; 2 - короткое плечо; 3 - вторичная перетяжка; 4- центромер; 5 - волокна веретена.

Характерными чертами морфологии определенных хромосом являются вторичные перетяжки (не обладающие функцией центромера), а также спутники - маленькие участки хромосом, соединенные с остальным ее телом тонкой нитью (рис. 5). Спутничные нити обладают способностью формировать ядрышки. Характерная структура в хромосоме (хромомеры) - утолщения или более плотно спирализованные участки хромосомной нити (хромонемы). Рисунок хромомер специфичен для каждой пары хромосом.


Рис. 5. Схема морфологии хромосомы в анафазе митоза (хроматида. отходящая к полюсу). А - внешний вид хромосомы; Б - внутреннее строение той же хромосомы с двумя составляющими ее хромонемами (полухроматидами): 1 - первичная перетяжка с хромомерами, составляющими центромер; 2 - вторичная перетяжка; 3 - спутник; 4 - нить спутника.

Число хромосом, их размеры и форма на стадии метафазы характерны для каждого вида организмов. Совокупность этих признаков набора хромосом называется кариотипом. Кариотип можно представить в виде схемы, называемой идиограммой (см. ниже хромосомы человека).

Половые хромосомы . Гены, детерминирующие пол, локализованы в специальной паре хромосом - половых хромосомах (млекопитающие, человек); в других случаях иол определяется соотношением числа половых хромосом и всех остальных, называемых аутосомами (дрозофила). У человека, как и у других млекопитающих, женский пол определяется двумя одинаковыми хромосомами, обозначаемыми как Х-хромосомы, мужской пол определяется парой гетероморфных хромосом: Х и Y. В результате редукционного деления (мейоза) при созревании ооцитов (см. Овогенез) у женщин все яйца содержат по одной Х-хромосоме. У мужчин в результате редукционного деления (созревания) сперматоцитов половина спермиев содержит Х-хромосому, а другая половина Y-хромосому. Пол ребенка определяется случайным оплодотворением яйцеклетки спермием, несущим Х- или Y-хромосому. В результате возникает зародыш женского (XX) или мужского (XY) пола. В интерфазном ядре у женщин одна из Х-хромосом видна как глыбка компактного полового хроматина.

Функционирование хромосом и метаболизм ядра . Хромосомная ДНК является матрицей для синтеза специфических молекул информационной РНК. Этот синтез происходит тогда, когда данный участок хромосомы деспирализован. Примерами локальной активации хромосом служат: образование деспирализованных петель хромосом в ооцитах птиц, амфибий, рыб (так называемые Х-ламповые щетки) и вздутий (пуффов) определенных локусов хромосом в многонитчатых (политенных) хромосомах слюнных желез и других секреторных органов двукрылых насекомых (рис. 6). Примером инактивации целой хромосомы, т. е. выключения ее из метаболизма данной клетки, является образование одной из Х-хромосом компактного тела полового хроматина.

Рис. 6. Политенные хромосомы двукрылого насекомого Acriscotopus lucidus: А и Б - участок, ограниченный пунктирными линиями, в состоянии интенсивного функционирования (пуфф); В - тот же участок в нефункционирующем состоянии. Цифрами обозначены отдельные локусы хромосом (хромомеры).
Рис. 7. Хромосомный набор в культуре лейкоцитов периферической крови мужчины (2n=46).

Вскрытие механизмов функционирования политенных хромосом типа ламповых щеток и других типов спирализации и деспирализации хромосом имеет решающее значение для понимания обратимой дифференциальной активации генов.

Хромосомы человека . В 1922 г. Пейнтер (Т. S. Painter) установил диплоидное число хромосом человека (в сперматогониях), равное 48. В 1956 г. Тио и Леван (Н. J. Tjio, A. Levan) использовали комплекс новых методов исследования хромосом человека: культуру клеток; исследование хромосом без гистологических срезов на тотальных препаратах клеток; колхицин, приводящий к остановке митозов на стадии метафазы и накоплению таких метафаз; фитогемагглютинин, стимулирующий вступление клеток в митоз; обработку метафазных клеток гипотоническим солевым раствором. Все это позволило уточнить диплоидное число хромосом у человека (оно оказалось равным 46) и дать описание кариотипа человека. В 1960 г. в Денвере (США) международная комиссия разработала номенклатуру хромосом человека. Согласно предложениям комиссии, термин «кариотип» следует применять к систематизированному набору хромосом единичной клетки (рис. 7 и 8). Термин «идиотрамма» сохраняется для представления о наборе хромосом в виде диаграммы, построенной на основании измерений и описания морфологии хромосом нескольких клеток.

Хромосомы человека пронумерованы (отчасти серийно) от 1 до 22 в соответствии с особенностями морфологии, допускающими их идентификацию. Половые хромосомы не имеют номеров и обозначаются как Х и Y (рис. 8).

Обнаружена связь ряда заболеваний и врожденных дефектов в развитии человека с изменениями в числе и структуре его хромосом. (см. Наследственность).

См. также Цитогенетические исследования.

Все эти достижения создали прочную базу для развития цитогенетики человека.

Рис. 1. Хромосомы: А - на стадии анафазы митоза в микроспороцитах трилистника; Б - на стадии метафазы первого деления мейоза в материнских клетках пыльцы у традесканции. В обоих случаях видно спиральное строение хромосом.
Рис. 2. Элементарные хромосомные нити с диаметром 100 Å (ДНК + гистон) из интерфазных ядер вилочковой железы теленка (электронная микроскопия): А - изолированные из ядер нити; Б - тонкий срез через пленку того же препарата.
Рис. 3. Хромосомный набор Vicia faba (конские бобы) в стадии метафазы.
Рис. 8. Хромосомы того же, что на рис. 7, набора, систематизированные согласно денверовской номенклатуре в пары гомологов (кариотип).